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Abstract. While rice pests and diseases significantly impact crop yields, 
existing deep learning methods for their detection face challenges with 
accuracy and deployment complexity. Addressing these issues, this 
study proposes the YOLOv8-HSFPN, an advanced detection framework. 
Firstly, it features an innovative High-level Select Feature Pyramid Net-
work (HSFPN) neck network that effectively integrates high-level and 
low-level feature sets for enhanced feature fusion. Secondly, the addition 
of a deformable self-attention module further refines the model’s adapt-
ability to the varying shapes and locations of targets, dynamically adjust-
ing to the salient features. The proposed model has undergone compar-
ative and ablation studies alongside YOLOv8, YOLOv9, and YOLOv5, 
confirming its improved accuracy and streamlined deployment. This inte-
gration results in a robust detection model that not only marks a signifi-
cant leap in accuracy, evidenced by a 3% empirical increase over the stan-
dard YOLOv8, but is also remarkably compact. At a mere 3.97MB, this 
substantial 49.87% size reduction compared to its predecessors renders it 
exceptionally suitable for devices with limited computational resources, 
thereby enhancing its viability in practical, real-world applications. 

Keywords: Rice Pest and Diseases Detection · YOLOv8 · HSFPN · 
Deformable Self-Attention · Feature Fusion 

1 Introduction 

In recent years, the escalating severity of the climate has led to an increased fre-
quency of extreme weather events. These events have inflicted significant damage 
on agricultural production, and concurrently, there has been an upward trend 
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in the incidence of crop pests and diseases. [ 1] The need for swift and precise 
detection of crop pests and diseases has grown in importance. Traditionally, iden-
tification has depended on manual examination by teams of agricultural experts 
[ 2], typically assembled from plant protection departments. Nevertheless, manual 
identification methods hinge heavily on the expertise of the examiner, presenting 
several drawbacks, including protracted processing times, diminished detection 
efficiency, and a pronounced subjectivity in outcomes. 

This study proposes an enhanced pest detection model, YOLOv8-HSFPN, 
which leverages a deep learning approach to integrate multilevel feature fusion 
and deformable self-attention mechanisms [ 3]. The HSFPN supersedes the con-
ventional neck network by merging a feature fusion module that synergizes high-
level and low-level feature sets. Additionally, it incorporates a deformable self-
attention module designed for the adaptive calibration and weighting of input 
features [ 4]. The dataset utilized in this research comprises images captured 
within an experimental shed, which have undergone various transformations such 
as flipping, scaling, and cropping to augment the data, ultimately resulting in 
the finalized dataset. 

2 Related Work 

Deep learning, a pivotal subset of machine learning [ 5], alongside artificial intelli-
gence and other advanced information technologies, paves the way for the evolu-
tion of modern agriculture, facilitating the progression towards intelligent farm-
ing. Despite the broad utilization of deep learning, research in the domain of 
crop pest detection remains relatively scarce [ 6, 7]. 

Liangliang Tian et al. [ 8] proposes a novel apple leaf disease detection method 
called VMF-SSD (V-space-based Multi-scale Feature-fusion SSD),and experi-
mental results showed that the VMF-SSD method achieves 83.19% mAP and 
obtains the detection speed of 27.53 FPS on the test set. Furthermore, Yuanjia 
Zhang et al. [ 9] enhanced detection capabilities by implementing the Efficient 
Channel Attention (ECA) mechanism, the hard-Swish activation function, and 
the Focal Loss function. Post-experimentation, this model demonstrated a mean 
Average Precision (mAP) of 94.04%, with its detection accuracy and speed meet-
ing the demands for real-time applications. 

3 Methodology 

Currently, the majority of deep learning algorithms for pest detection operate 
on a single-stage basis, offering rapid detection speeds. However, these tend 
to fall short in accuracy when compared to multi-stage algorithms. This study 
leverages the HS-FPN from the MFDS-DETR to enhance the feature fusion layer 
and refine the original Neck component [ 3]. Within the YOLOv8 framework,



98 Y. Yang et al.

the Neck serves as an intermediary between the backbone and head networks, 
facilitating feature fusion and processing, thereby augmenting both detection 
efficiency and accuracy. This paper proposes the YOLOv8-HSFPN model, as 
depicted in Fig. 1, an advancement over the existing YOLOv8. The HSFPN 
supersedes the original Neck network by integrating a feature fusion module 
that synergizes high-level and low-level features. Additionally, a variable row self-
attention module is implemented to adaptively adjust and weight input features, 
culminating in simultaneous enhancements in detection speed and accuracy [ 3]. 

Fig. 1. The structure of YOLOv8-HSFPN 

3.1 The Basic Principle of HSFPN 

The structure of HSFPN is illustrated in Fig. 2, the architecture is comprised of 
two principal components: the feature selection module and the feature fusion 
module. The feature selection module leverages channel attention (CA) and 
dimension matching (DM) mechanisms to selectively filter feature maps across 
various scales [ 3]. Utilizing pooling operations, such as global average pooling 
and global maximum pooling, coupled with weight computation, this module 
proficiently isolates vital information within each channel. The feature fusion 
module, on the other hand, integrates the refined low-level features with high-
level features employing the selective feature fusion (SFF) mechanism. High-level 
features undergo expansion and are scaled using bilinear interpolation or trans-
posed convolution [ 11], facilitating their amalgamation with low-level features to 
bolster the model’s feature representation capabilities. Collectively, these mod-
ules enable HS-FPN to adeptly address the challenges of multiscale detection, 
thereby enhancing both the precision and robustness of the detection process.
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Fig. 2. The structure of HSFPN 

3.2 The Feature of Selection Module 

As depicted in Fig. 2, the Channel Attention (CA) module and the Dimension 
Matching (DM) module are crucial components in the detection process, sig-
nificantly influencing its efficacy. Initially, the CA module processes the input 
feature map, denoted as fin ∈ RC×H×W , where C, H and W represent the num-
ber of channels, height, and width of the feature map, respectively. This map is 
subsequently merged with features derived from global maximum pooling and 
global average pooling operations [ 12]. Utilizing the Sigmoid activation function, 
the CA module calculates the weight of each channel, resulting in a weighted 
channel feature map, fCA = RC×1×1. Pooling operations serve multiple pur-
poses: they reduce the feature map’s dimensionality, compress features, minimize 
parameter computation, and confer translation, rotation, and scale invariance to 
the model. Maximum pooling is designed to capture the most salient features by 
dividing the input feature map into distinct, non-overlapping regions and select-
ing the maximum value from each region [ 13]. This operation not only diminishes 
the feature map’s size but also accentuates crucial spatial details. Conversely, 
average pooling aims to condense feature dimensions while preserving the over-
all feature landscape [ 14]. Similar to maximum pooling, it segments the feature 
map into non-overlapping regions, selecting the average value of each segment as 
the output, thereby maintaining the statistical integrity of the features [ 15]. The 
integration of the CA module with pooling strategies thus ensures the extraction 
of representative information with minimal loss. Before proceeding to feature 
fusion, dimensional matching across varying scales of feature maps, which pos-
sess disparate channel counts, is imperative. The DM module accomplishes this 
by employing 1 × 1 convolution to standardize the channel count of each scale’s 
feature map to 256.
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3.3 SFF Module 

Fig. 3. The structure of SFF 

The Selective Feature Fusion (SFF) module adeptly isolates crucial semantic 
information from low-level features by employing high-level features as guid-
ance weights [ 3]. The structure of module is illustrated in Fig. 3. This method 
of feature fusion not only bolsters the module’s efficiency but also its accuracy. 
Considering an input of high-level features fhigh ∈ RC×H×W and an input of 
low-level features flow ∈ RC×H1×W1 , the high-level input undergoes processing 
with a stride of 2 and a 3 convolution kernel, resulting in a modified feature size 
of f

̂high ∈ RC×2H×2W . To align the dimensions of high-level and low-level fea-
tures, bilinear interpolation is applied to either up-sample or down-sample the 
high-level features, yielding fatt ∈ RC×H1×W1 . Subsequently, with dimensionally 
consistent features, the high-level features are transformed into attention weights 
via the CA module to refine the low-level features. The culmination of this pro-
cess is the fusion of the selectively filtered low-level features with the high-level 
features, thereby enriching the model’s feature representation and producing an 
output of fout ∈ RC×H1×W1 . The equations that follow delineate the feature 
selection and fusion process: 

fatt = BL(T − Conv(fhigh)) (1) 

fout = flow ∗ CA(fatt) +  fatt (2) 
During image resampling, a synergistic approach involving transposed con-

volution (often referred to as inverse convolution) and bilinear interpolation was 
employed to reconstruct high-resolution feature maps [ 3,16]. Bilinear interpola-
tion, noted for its straightforwardness and efficiency, operates directly on pixel 
values to facilitate the image scaling process. Transposed convolution offers dis-
tinct advantages: firstly, it adjusts data through learnable parameters, not only 
increasing the feature map’s dimensions but also reconstructing the input data 
in a convoluted fashion. This is achieved by executing convolutional operations 
on an upsampled feature map, which involves padding the convolution kernel 
with zeros; secondly, it can generate varied positions within the output image 
by sampling disparate regions of the input image, thereby effectively addressing 
issues of non-uniform sampling.
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3.4 The Deformable Self-Attention Module 

As represented in Fig. 4, the deformable self-attention module is bifurcated into 
two pivotal components: the offset module and the attention module [ 3]. Ini-
tially, vectors are transmuted into feature mappings prior to their integration 
into the Offset Module. This process involves generating input query vectors 
based on the coordinates of a designated reference point. Subsequently, a lin-
ear transformation is applied to the query vector to ascertain the offset Δpq, 
while a similar method is applied to the input feature mapping to derive the 
content feature mapping, and then bilinear interpolation is used to realize the 
output offsetvalue. Within the attention module, the transformational process 
commences with a linear alteration of the input query vector. Following this, 
the application of the Softmax function facilitates the creation of a weight vec-
tor for each offset [ 4]. Outputs derived from each offset in the offset module 
are then amalgamated with their respective weight vectors [ 3], culminating in 
the aggregation known as Samplevalue. Attention headers associated with each 
reference point are subsequently concatenated, forming the composite vector 
Sampleoutput. The process concludes with a linear transformation of the sam-
pled output vectors to procure the final output values. The equations delineated 
below elucidate this comprehensive process: 

Fig. 4. Deformable Self-Attention Module 

Weight  = Sof t max(WQ) (3) 

Sampleνalue = 
K∑

k=1 

offsetνalue ∗ Weight (4) 

Sampleoutput = Concat(Sample1 νalue, 
· · ·  , SampleH 

νalue), 
(5)
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Output = W ∗ Sampleoutput (6) 
The Deformable Self-Attention Module is engineered to concentrate on criti-

cal regions within datasets, overcoming the constraints inherent in conventional 
attention mechanisms that process extensive contextual information. This mod-
ule exhibits the capability to dynamically modulate its focus based on the input 
data, thereby encapsulating a broader spectrum of task-specific feature informa-
tion. Such an adaptive, data-centric attention mechanism significantly enhances 
the model’s efficacy in processing images characterized by intricate structures 
and variability. 

4 Experiment 

4.1 Datasets 
This study utilized a comprehensive dataset comprising 11292 images, segmented 
into 9,868 for training, 949 for validation, and 475 for testing. The dataset encom-
passes four primary pests and diseases: Leaf Spot Disease, Brownspot, Tungro, 
and Bacterial Blight, with respective counts of 2658, 3631, 1979, and 3024. To 
closely mimic the variability encountered in natural settings, the dataset under-
went several augmentation techniques, including image flipping and adjustments 
in brightness and darkness, among other enhancements. 

Table 1. The dataset used in this paper. 

Categories Train Set Validation Set Test Set 
Leaf Spot Disease 2237 313 108 
Brownspot 3261 275 95 
Tungro 1692 163 124 
Bacterial Blight 2678 198 148 

Fig. 5. Diseases and pests plant morphology 

Table 1 shows the number of images in the training, test and validation sets 
in the dataset, Fig. 5 depict the plant morphology of four distinct rice pests 
and diseases, From left to right are Leaf Spot Disease, Brownspot, Tungro, and 
Bacterial Blight.
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4.2 Experimental Environment 

To enhance training efficiency, the model leverages the GPU-accelerated version 
of the PyTorch deep learning framework. Code debugging was conducted using 
PyCharm 2022.1.3. The software environment comprises Windows 11 Profes-
sional 22H2, Python 3.9, CUDA 11.8, NVIDIA Driver 551.76, and CuDNN 8.7. 
The model was developed with PyTorch 2.2, OpenCV 4.9, TensorBoard 2.16, 
and TorchSummary 1.5. For hardware, an NVIDIA GeForce RTX 2060 graphics 
card was utilized. 

4.3 Implementation Details 

To substantiate the efficacy and real-time capabilities of the enhanced model 
presented in this study for the detection of crop pests and diseases, an experi-
mental evaluation was conducted. The performance of the proposed model was 
benchmarked against the YOLOv5 model, with both YOLOv8-HSFPN.pth and 
YOLOv5-best.pth models undergoing training. The retraining procedure was 
configured with an epoch count of 500, signifying a comprehensive 500 train-
ing cycles. Throughout the model’s training phase, vigilant monitoring of the 
loss function’s value was maintained. A stabilization of the loss function over 
a sequence of training cycles, without substantial decrement, may suggest the 
attainment of the model’s optimal state. Any further training beyond this junc-
ture could potentially lead to overfitting. 

Table 2. Model specific parameters during training. 

Parameter name Parameter value 
Size of training set images 416 × 416 
Validation set image size 416 × 416 
Optimizer SGD 
Iterations 500 
Initial learning rates 0.01 
Batch size 4 

To accommodate various regression samples and enhance the efficacy of dis-
tinct detection tasks, a linear interval mapping approach has been employed to 
reformulate the IoU loss [ 17], thereby facilitating more refined edge regression. 
The formulation is as follows: 

IoU focaler  = 

⎧ 
⎨ 

⎩ 

0, IoU  <  d  
IoU −d 

u−d , d � IoU � u 
1, IoU  >  u  

(7) 

where IoU focaler  is the reconstructed focaler-IoU and IoU is the original 
value.[d, u] ∈ [0, 1]. By adjusting the values of d and u, it is possible to make
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IoU focaler  different from the regression sample. The definition of its loss is shown 
below: 

LFocaler−IoU = 1  − IoU focaler (8) 
Applying the focaler-IoU loss to the existing IoU -based bounding box 

regression loss function, we get LFocaler−GIoU , LFocaler−DIoU ,LFocaler−CIoU , 
LFocaler−EIoU , and  LFocaler−SIoU ,The calculation formula is as follows. 

LFocaler−GIoU = LGIoU + IoU − IoU Focaler (9) 

LFocaler−DIoU = LDIoU + IoU − IoU Focaler (10) 

LFocaler−CIoU = LCIoU + IoU − IoU Focaler (11) 

FFocaler−EIoU = LEIoU + IoU − IoU Focaler (12) 

LFocaler−SIoU = LSIoU + IoU − IoU Focaler (13) 

5 Experimental Results 

5.1 Comparative Tests of Different Models 
The experiments of this paper’s algorithm with YOLOv5, YOLOv8 and YOLOv9 
illustrate the effectiveness of the algorithm proposed in this paper for detecting 
rice pests and diseases. Secondly, the comparative analysis of ablation experi-
ments shows that the HSFPN proposed in this paper improves the neck of the 
original network better than the original one. 

Table 3. Comparative tests with different models. 

Model name mAP50 mAP50-95 Recall Model weights 
YOLOv9 60.4% 29.4% 62.6% 6.27MB 
YOLOv8 60.50% 29.10% 62.30% 5.95MB 
YOLOv5 58.90% 26.00% 65.80% 13.70MB 
YOLOv8-HSFPN(ours) 62.40% 30.30% 63.20% 3.97MB 

The experimental findings indicate that the proposed YOLOv8-HSFPN 
model achieves a mAP50 of 62.4% and a mAP50-95 of 30.3%, surpassing the 
performance of both the YOLOv8 and YOLOv5 models. Although the recall 
rate of 63.2% is slightly lower than that of the YOLOv5 model, the model pro-
posed in this study is significantly more lightweight, with reductions in weight 
size by 33.2% and 71.0% compared to YOLOv8 and YOLOv5, respectively. This 
reduction in size renders the model suitable for deployment on edge devices with 
limited computational capabilities, thus aligning with the practical demands of 
agricultural production.
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5.2 Ablation Experiments 

Through ablation experiments, it is demonstrated that the model proposed in 
this paper has an advantage in accuracy, and the improved neck network also 
works better than other neck networks. The experimental results are shown in 
Table 4. 

Table 4. Results of ablation experiments. 

Model name mAP50 mAP50-95 Recall 
VanillaNet + BiFPN 59.0% 28.3% 62.2% 
Slim-Neck 62.1% 29.4% 61.0% 
HATHead 61.1% 29.2% 64.2% 
SENetV2 61.9% 29.9% 65.4% 
DySample 60.9% 29.4% 63.5% 
RepHead 61.7% 29.9% 63.3% 
AFPN 61.6% 29.1% 62.7% 
CGNet 61.4% 29.2% 63.7% 
HSFPN(ours) 62.40% 30.30% 63.20% 

5.3 Real Image Detection 

The experimental outcomes presented in Figs. 6, 7, and  8 illustrate the detection 
capabilities of each model under actual field conditions. Notably, the YOLOv5 
model fails to detect the first image, whereas the YOLOv8 model identifies one 
instance. The YOLOv8-HSFPN model excels by detecting two instances with a 
confidence level of 0.63, which surpasses the confidence levels achieved by the 
prior detections. 

Fig. 6. YOLOv8-HSFPN
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Fig. 7. YOLOv8 

Fig. 8. YOLOv5 

5.4 Limitation 

Although the model presented in this paper successfully fulfills its primary objec-
tive of pest and disease detection, it exhibits certain limitations that warrant 
attention for future enhancement. The datasets employed herein are exclusively 
derived from images captured within experimental greenhouses, which diverge 
significantly from natural crop growth conditions. Although these images may 
yield satisfactory performance in validation sets, they often fall short in real-
world testing. Future work should, therefore, prioritize the acquisition of more 
diverse images from actual field conditions. 

6 Conclusion 

In this paper, we propose a novel High-level Select Feature Pyramid Network 
(HSFPN) that substitutes the Neck component of the traditional YOLOv8 archi-
tecture. Enhancements incorporating multilevel feature fusion and deformable 
self-attention mechanisms facilitate more efficient image feature extraction. The 
resultant model is not only more lightweight but also exhibits improvements in 
detection accuracy, while concurrently requiring fewer computational resources. 
Such reductions enable deployment on plant protection devices with computa-
tional constraints. The model proposed in this paper outperforms the compared 
models on both mAP50 and mAP50-95. Real-time detection of pests and dis-
eases empowers agronomists to monitor crop health precisely and administer 
treatments as needed. 
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